Gradient Thermal Analysis by Induced Stimulus

نویسنده

  • Jim Colvin
چکیده

In the field of failure analysis of integrated circuits, diagnosing functional failures is a requirement. Traditional beam-based analysis techniques use a scanning laser or ebeam to induce a parametric shift, which is monitored through changes in current or voltage driven to the device. Deep submicron technologies frustrate these analytical methods due to the nearly immeasurable parametric shifts externally caused by a small signal leakage path internally. These internal failures can be identified functionally by timing, temperature or voltage dependencies but the exact location of the fault is difficult to isolate. SIFT (Stimulus Induced Fault Test), RIL (Resistive Interconnect Localization) and SDL (Soft Defect Localization) can identify anomalies functionally using induced thermal gradients to the metal but does not address how to analyze embedded temperature sensitive defects inaccessible to the laser. 1,2,3,4 Stacked die and similar 3 dimensional (3D) devices complicate the analysis requiring destruction/removal of one or more die. This paper will show how to create quantifiable thermal gradients to a defect and triangulate the location of the defect in 1, 2, and 3 dimensions as follows: 1. Apply a differential temperature gradient across the device in each of the X,Y, and Z-axes. The defect is localized based on its measured response in the gradient as the gradient sweeps across. 2. Induce a gradient with a laser and use the measurement of DC power required to relate the distance to the defect from various locations in relation to a heat sink. 3. Measure the time of flight of the thermal propagation to a defect from known laser positions to triangulate the location of the defect.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Casson Fluid Flow with Variable Viscosity and Thermal Conductivity along Exponentially Stretching Sheet Embedded in a Thermally Stratified Medium with Exponentially Heat Generation

The motion of temperature dependent viscosity and thermal conductivity of steady incompressible laminar free convective (MHD) non-Newtonian Casson fluid flow over an exponentially stretching surface embedded in a thermally stratified medium are investigated. It is assumed that natural convection is induced by buoyancy and exponentially decaying internal heat generation across the space. The dim...

متن کامل

Experimental Study of the Laser Induced Flow and Thermophoresis of Suspending Microparticles

The induced flow effect is the rotary motion generated in the fluid flow due to the temperature gradient. The phenomenon of thermophoresis is the movement of particles from the warmer side of the fluid to the cooler side. Laser is a very suitable device for creating a temperature gradient due to its unique features such as high power density, harmonic waves, single wavelength and very low diver...

متن کامل

Functional Failure Analysis by Induced Stimulus

In the field of failure analysis of integrated circuits, diagnosing functional failures is a requirement. Traditional beam-based analysis techniques use a scanning laser or e-beam to induce a parametric shift which is monitored through changes in current or voltage driven to the device. Deep submicron technologies frustrate these analytical methods due to the nearly immeasurable parametric shif...

متن کامل

Investigating Tubes Material Selection on Thermal Stress in Shell Side Inlet Zone of a Vertical Shell and Tube Heat Exchanger

In this study, the effect of the tube material on the thermal stress generated in a vertical shell and tube heat exchanger is investigated. Shell and tube heat exchangers are the most common heat exchangers used in industries. One of the most common failures in these exchangers in the industry is the tube failure at the junction of the tube to tubesheet. When the shell side and the tube side fl...

متن کامل

Evaluating the Effects of Ceramic Layer and Thermal Dam on Optimizing the Temperature Gradient of a Gasoline Engine Piston (TECHNICAL NOTE)

The purpose of this paper is to evaluate the effect of different methods for improving the temperature gradient of a specified gasoline engine piston. With a robust FE based software, 3D thermal analyses have been carried out for the piston model. Unlike previous studies, the effects of both fully and locally ceramic layers on the crown top surface were considered. It was found that a fully cer...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009